ASIC1-mediated calcium entry stimulates NFATc3 nuclear translocation via PICK1 coupling in pulmonary arterial smooth muscle cells.

نویسندگان

  • Laura V Gonzalez Bosc
  • Danielle R Plomaritas
  • Lindsay M Herbert
  • Wieslawa Giermakowska
  • Carly Browning
  • Nikki L Jernigan
چکیده

The development of chronic hypoxia (CH)-induced pulmonary hypertension is associated with increased pulmonary arterial smooth muscle cell (PASMC) Ca(2+) influx through acid-sensing ion channel-1 (ASIC1) and activation of the Ca(2+)/calcineurin-dependent transcription factor known as nuclear factor of activated T-cells isoform c3 (NFATc3). Whether Ca(2+) influx through ASIC1 contributes to NFATc3 activation in the pulmonary vasculature is unknown. Furthermore, both ASIC1 and calcineurin have been shown to interact with the scaffolding protein known as protein interacting with C kinase-1 (PICK1). In the present study, we tested the hypothesis that ASIC1 contributes to NFATc3 nuclear translocation in PASMC in a PICK1-dependent manner. Using both ASIC1 knockout (ASIC1(-/-)) mice and pharmacological inhibition of ASIC1, we demonstrate that ASIC1 contributes to CH-induced (1 wk at 380 mmHg) and endothelin-1 (ET-1)-induced (10(-7) M) Ca(2+) responses and NFATc3 nuclear import in PASMC. The interaction between ASIC1/PICK1/calcineurin was shown using a Duolink in situ Proximity Ligation Assay. Inhibition of PICK1 by using FSC231 abolished ET-1-induced and ionomycin-induced NFATc3 nuclear import, but it did not alter ET-1-mediated Ca(2+) responses, suggesting that PICK1 acts downstream of Ca(2+) influx. The key findings of the present work are that 1) Ca(2+) influx through ASIC1 mediates CH- and ET-1-induced NFATc3 nuclear import and 2) the scaffolding protein PICK1 is necessary for NFATc3 nuclear import. Together, these data provide an essential link between CH-induced ASIC1-mediated Ca(2+) influx and activation of the NFATc3 transcription factor. Identification of this ASIC1/PICK1/NFATc3 signaling complex increases our understanding of the mechanisms contributing to the vascular remodeling and increased vascular contractility that are associated with CH-induced pulmonary hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PICK1/calcineurin suppress ASIC1-mediated Ca2+ entry in rat pulmonary arterial smooth muscle cells.

Acid-sensing ion channel 1 (ASIC1) contributes to Ca(2+) influx and contraction in pulmonary arterial smooth muscle cells (PASMC). ASIC1 binds the PDZ (PSD-95/Dlg/ZO-1) domain of the protein interacting with C kinase 1 (PICK1), and this interaction is important for the subcellular localization and/or activity of ASIC1. Therefore, we first hypothesized that PICK1 facilitates ASIC1-dependent Ca(2...

متن کامل

ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca(2+) entry.

Acid-sensing ion channels (ASIC) are voltage-insensitive, cationic channels that have recently been identified in vascular smooth muscle (VSM). It is possible that ASIC contribute to vascular reactivity via Na(+) and Ca(2+) conductance; however, their function in VSM is largely unknown. In pulmonary VSM, store-operated Ca(2+) entry (SOCE) plays a significant role in vasoregulatory mechanisms su...

متن کامل

ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca entry

Jernigan NL, Paffett ML, Walker BR, Resta TC. ASIC1 contributes to pulmonary vascular smooth muscle store-operated Ca entry. Am J Physiol Lung Cell Mol Physiol 297: L271–L285, 2009. First published May 29, 2009; doi:10.1152/ajplung.00020.2009.— Acid-sensing ion channels (ASIC) are voltage-insensitive, cationic channels that have recently been identified in vascular smooth muscle (VSM). It is po...

متن کامل

Role of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension.

Chronic hypoxia (CH) associated with respiratory disease results in elevated pulmonary vascular intracellular Ca(2+) concentration, which elicits enhanced vasoconstriction and promotes vascular arterial remodeling and thus has important implications in the development of pulmonary hypertension (PH). Store-operated Ca(2+) entry (SOCE) contributes to this elevated intracellular Ca(2+) concentrati...

متن کامل

CALL FOR PAPERS Pathophysiology of Hypertension Role of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension

Nitta CH, Osmond DA, Herbert LM, Beasley BF, Resta TC, Walker BR, Jernigan NL. Role of ASIC1 in the development of chronic hypoxia-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 306: H41–H52, 2014. First published November 1, 2013; doi:10.1152/ajpheart.00269.2013.—Chronic hypoxia (CH) associated with respiratory disease results in elevated pulmonary vascular intracellular Ca co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 311 1  شماره 

صفحات  -

تاریخ انتشار 2016